Do Workers Work More if Wages Are High? Evidence from a Randomized Field Experiment

by Ernst Fehr and Lorenz Goette (AER, 2007)

Presentation by Renke Schmacker
Experimental and Behavioral Economics (TU Berlin)
10.06.2013
Motivation

→ Do workers work more if wages are high?

- Intertemporal labor supply (Card 1994):
 - \(\log h_{it} = a_{it} + \eta \log w_{it} + \delta \log \lambda_{it} \)
 - \(h_{it} \): working hours
 - \(a_{it} \): individual preferences
 - \(\eta \): intertemporal substitution elasticity
 - \(w_{it} \): real wage per hour
 - \(\delta \): „income elasticity“
 - \(\lambda_{it} \): marginal utility of wealth
Motivation

→ Do workers work more if wages are high?

- Intertemporal labor supply (Card 1994):
 - \(\log h_{it} = a_{it} + \eta \log w_{it} + \delta \log \lambda_{it} \)
 - \(h_{it} \): working hours
 - \(a_{it} \): individual preferences
 - \(\eta \): intertemporal substitution elasticity
 - \(w_{it} \): real wage per hour
 - \(\delta \): "income elasticity"
 - \(\lambda_{it} \): marginal utility of wealth

- Model predicts intertemporal substitution when the wage change is
 - transitory
 - anticipated

Size of \(\eta \) has major implications for
- propagation of shocks across periods in RBC
- policy advice, e.g. "Kurzarbeitergeld"
Literature

- Camerer et al. (1997): New York City cab drivers’ labor supply
 - workers work fewer hours (\(\triangleq\) less effort) on high-wage days
 \(\Rightarrow\) negative effort elasticity
Experimental setup

Data:
- delivery records of a bicycle messenger service in Zurich (between 50 and 60 participating employees)
Experimental setup

Data:
- delivery records of a bicycle messenger service in Zurich (between 50 and 60 participating employees)

Independent Variable:
- increase in the commission rate by roughly 25% for the treatment group
Aug. 2000
Announcement

Randomization

Sept. 2000
Group A
- Treatment

Group B
- Control group

Nov. 2000
- 4 weeks
- 4 weeks

Dec. 2000
Payout

Group A
- Control group

Group B
- Treatment
Experimental setup

Data:
- delivery records of a bicycle messenger service in Zurich
 (between 50 and 60 participating employees)

Independent Variable:
- increase in the commission rate by roughly 25% for the treatment group

Dependent Variable:
- number of shifts per messenger
- generated revenues per messenger (deliveries*price) → effort

Controls:
- time effects (demand variations) controlled for by taking into account delivery records of a second messenger service
Aug. 2000

Announcement

Randomization

Group A

Sept. 2000
Treatement

Control group

Group B

Nov. 2000
Control group

Treatment

Dec. 2000
Payout

Compare

4 weeks

Compare

4 weeks
Results

Table 3—Main Experimental Results

(OLS regressions)

<table>
<thead>
<tr>
<th></th>
<th>Dependent variable:</th>
<th></th>
<th>Dependent variable:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Revenues per four-week period</td>
<td></td>
<td>Shifts per four-week period</td>
</tr>
<tr>
<td>Observations are restricted to</td>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Treatment dummy</td>
<td>Messengers participating in experiment</td>
<td>All messengers at Veloblitz</td>
<td>All messengers at Flash and Veloblitz</td>
</tr>
<tr>
<td></td>
<td>1,033.6***</td>
<td>1,094.5***</td>
<td>1,035.8**</td>
</tr>
<tr>
<td></td>
<td>(326.9)</td>
<td>(297.8)</td>
<td>(444.7)</td>
</tr>
<tr>
<td>Dummy for nontreated at Veloblitz</td>
<td></td>
<td>-211</td>
<td>-370.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(497.3)</td>
<td>(334.1)</td>
</tr>
<tr>
<td>Treatment period 1</td>
<td></td>
<td>-574.7</td>
<td>-656.2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(545.7)</td>
<td>(357.9)</td>
</tr>
<tr>
<td>Treatment period 2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Individual fixed effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>R squared</td>
<td>0.74</td>
<td>0.786</td>
<td>0.753</td>
</tr>
<tr>
<td>N</td>
<td>124</td>
<td>190</td>
<td>386</td>
</tr>
</tbody>
</table>

Note: Robust standard errors, adjusted for clustering on messengers, are in parentheses.

*** Indicates significance at the 1-percent level.

** Indicates significance at the 5-percent level.

* Indicates significance at the 10-percent level.

Source: Fehr, Goette (2007)
Results

• Compute substitution elasticities:
 • Revenues:
 • Treatment period 1: \(\frac{1.000}{3.568} = 1.12 \)
 • Treatment period 2: \(\frac{1.000}{3.205} = 1.25 \)
 • Shifts:
 • Treatment period 1: \(\frac{4}{11.925} = 1.34 \)
 • Treatment period 2: \(\frac{4}{10.64} = 1.50 \)

→ By definition: \(\varepsilon_{revenues} = \varepsilon_{shifts} + \varepsilon_{revenues \ per \ shifts} \)
 • Treatment period 1: 1.12 = 1.34 + (-0.22)
 • Treatment period 2: 1.25 = 1.50 + (-0.25)

Revenues per shift (=effort) decrease in reaction to a wage increase!
Discussion

→ Do workers work more if wages increase?
 → workers work more hours (average elasticity of shifts is 1.42)
 → workers spend less effort during their work time (average elasticity of effort per shift is -0.24)

→ How can this results be explained theoretically?
 → Not consistent:
 → Standard neoclassical model
 → Consistent:
 → Modified neoclassical model with preference spillovers
 → Reference dependency (target income with loss aversion)
Test of the reference-dependency explanation

- Do the loss averse workers drive the effect?

Experiment:
- choose
 - Lottery A: (-5, p=.5; 8, p=.5)
 - Lottery B: six repetitions of lottery A
 - reject both: (0, p=1)

and/or

or
Test of the reference-dependency explanation

Source: Fehr, Goette (2007)
Summary and Critique

• Workers at a bicycle messenger service work more shifts if wages are higher...
 • ...but spend less effort
 • Overall the intertemporal substitution elasticity is positive (≈ 1.19)
• The findings can be good explained by a reference-dependency model with loss-averse individuals

Caveats:
• The “test“ of loss aversion is no falsification (Popper)
 \rightarrow thereby discrimination between theories not possible
• Are the findings really applicable to workers in other domains?
 \rightarrow necessary condition for drawing policy conclusions
Quellen