Experimental Economics

Lecture 2: Some design issues
(based on slides by Armin Falk)

Dorothea Kübler, Dietmar Fehr
Summer term 2012
Steps

• Questions
• Design
• Hypotheses
 - Standard
 - Alternative
• Preparing the experiment
 - Instructions
 - Computer program
 - Procedural details
• Running the experiment
• Data analysis
• Writing the paper and presenting the results
Technicalities of experiments

- **Treatment**: a particular condition of the experiment
 - Often there is a (main) treatment and a control treatment (or more).
 - Everything else kept equal, only one change

- An **experiment** usually consists of several **sessions**.
 - In a session a group of people takes part in the experiment at a particular date and place.

- **Subjects** are participants in the experiment.
Across- and Within-Subject-Design

• **Within-Subject-Design**: Subjects participate in more than one treatment
 - Allows for individual comparison
 - Control for individual fixed effects
 - More powerful tests
 But: Problem with order effects as in the second treatment subjects have learned something already. Solution: reverse order to control for order effects (AB / BA Design).

• **Across-Subject-Design**: Subjects participate only in one treatment
What are observations?

- Distinction between observation and statistically independent observation
- Example: 5 Sessions of a market experiment with ten periods and ten trades each
 - 500 price observations
 - Only 5 independent observations (means per session, which in this case is a matching group)
 - Independent because no interaction across matching groups
- If there are only few (independent) observations, experimentalists often use non-parametric tests instead of regressions.
One shot vs. repeated interactions

• Pro One-Shot
 - Strong incentives for decision
 - No strategic spillovers across periods
 - Easy to perform and short

• Pro repetitions (“repeated one-shot”)
 - Learning
 - Possible to observe dynamics, e.g., convergence to equilibrium
 - More observations
Implementing repeated games

• E.g., partner design: Groups of subjects stay together for more than one period

• Finitely repeated game
 - If only selfish types and unique Nash equilibrium in stage game: backward induction gives solution to game (start in last period…).
 - If stage game has multiple Nash equilibria, no unique prediction (“anything goes”).
 - If multiple types (e.g., reciprocal and selfish players), many Bayesian Nash equilibria.
Implementing repeated games

• “Infinitely” repeated game
 - Implementation with the help of a termination probability
 - Problem: length of the experiment is endogenous
 ~ Do you want to throw dice for five hours?
 ~ What if after the first period the game ends?
 ~ Different sessions have different lengths
Partner vs. stranger design

- Partner (groups of subjects stay together for several periods)
 - Every pair/group of partners yields one independent observation
 - Allows analysis of strategic considerations
- Stranger (pairs or groups are recomposed randomly)
 - Similar behavior/prediction as “one-shot” but more observations
- Perfect stranger: probability of being re-matched with the same person is exactly zero (and subjects know that)
Strategy method

- Strategy method was first used by Reinhard Selten.
 - Idea: Instead of just playing the game, subjects are asked to indicate an action at each information set
 - i.e., the experimenter elicits a strategy

- Example: Sequential prisoner’s dilemma
 - Second mover is asked: What do you do (defect or cooperate)
 ~ if first mover cooperates?
 ~ if first mover defects?
• Advantages of strategy method
 - More information about motivation/behavior of players
 (Figure out, e.g., that someone is a reciprocal player, even though first movers always defect)
 - Information about how people would play “off equilibrium” or “off action path” (since this is not usually reached, you have no information how they play unless use strategy method)

• Problems of strategy method
 - Incentives are weaker, since each information set is reached only with probability < 1.
 - Hot vs. cold emotions: People might feel and act differently knowing they have reached a particular information set, compared to potentially reaching it.
 - Explaining the strategy method to subjects is tricky (loss of understanding, control)
 - Lose move structure of game
• Does strategy method induce a different behavior relative to a situation where a subject responds to the actual move of an opponent?

• Moreover: You may use strategy method in all your treatments, and focus on treatment differences.
Role switching

- Role switching: Subjects act in different roles, e.g., in the ultimatum game as a proposer and a responder.
- Helps to put oneself in the shoes of the other person. This can be useful for learning in complex games (e.g. signaling games).
- May not be a good procedure because you lose information about how people act in a given role (e.g. when focus is on fairness).
Learning rounds

• In complicated experiments (e.g., with difficult trading rules in markets) it is a good idea to have subjects try out the rules of the game first, without monetary consequences.

• Advantages
 - Guarantees subjects’ understanding from the first paid period on
 - Allows answering “new” questions of subjects that arise after learning trials

• Disadvantages
 - You lose information about the “true” first period
 - People infer uncontrolled things from the learning trials
 - Subjects may send (costless) signals

• Makes most sense if the institutions are really difficult. Maybe it is not necessary to play a full game (e.g., just the complicated part) and maybe it is not necessary to display all information about others’ actions.

• In any case: if learning trials, then in all treatments
Implementing risky decisions

• Most important: use credible chance moves
 - If many chance moves are necessary: Random device at the computer
 - If only few chance moves and if credibility is easily doubted (e.g., imposing infinitely repeated games): Throwing dice may be better, and may have people do that on their own.

• Risk preferences
 - May influence theoretical predictions.
 - In theory, possible to control risk preferences with binary lottery method:
 ~ In the experiment earn points
 ~ Payments depend on winning a lottery
 ~ Probability of winning higher the more points a subject has

[Works due to linearity of expected utility in probabilities.]
Losses

• Interesting to study losses
• Asymmetry between gains and losses (prospect theory, e.g., Kahneman/Tversky 1992)
• Relative to a given reference standard, people dislike a loss more than they like a gain of equal size.
• Sometimes losses may occur given the nature of the experiment (e.g., in auction experiments)
Eliciting beliefs

- Example: Prisoner’s dilemma
 - Before subjects make their decisions, both players are asked what they think the other player will do, cooperate or defect?
- Advantages
 - Beliefs can be informative to understand the motivation
 - Beliefs can be used to check the rationality of decisions (Example: guessing game)
- Problems
 - Experimenter-Demand–Effect (you may make people think about stuff they would not have thought about)
 - Desire to be consistent: people state beliefs to “match” their actions
 - People have a desire to “justify” actions: someone defects and states the other person will defect also
Pay beliefs?

- **Pros**
 - Subjects have an incentive to state correct beliefs
- **Cons**
 - Costly and – given a budget – goes at the cost of incentives in the decision part
 - Subjects have no incentive to state wrong beliefs anyway
 - Sometimes complicated to explain (e.g., payment dependent on distance measure between true outcome and expected outcome, „quadratic scoring rule“)
 - Can pollute incentives in the experiment if people “hedge” decisions, e.g., in coordination games
Paper and pencil vs. computerized experiments

- Advantages of paper and pencil experiments
 - Flexibility (quickly develop new treatments)
 - Relatively low start up costs
 - Natural environment
 ~ Not a lab with computers etc. but a classroom
 ~ Procedures more visible and credible (e.g., throw dice)
 - Matching of people is easy to recognize (walking around of experimenter)

- Advantages of computerized experiments
 - Better control
 ~ no communication among subjects
 ~ less interaction with experimenter
 - Running of experiment much simpler (e.g., markets)
 - Fewer mistakes
 - Automatic data collection
Deception

• Never cheat on subjects, even though it is tempting from a scientific point of view.

• Why?
 - You will lose your reputation towards your subjects: If you lie once they will never believe you in the future. This blurs all incentives.
 - There is a moral code among economic experimentalists not to do it. You will never publish a paper and people won‘t like your research.
Hypotheses

• In almost all experiments you want to have a set of predictions / hypotheses

• Traditional assumptions in game theory:
 - Rationality
 - Selfishness = money maximizing
 - Both are „common knowledge“

• Determine equilibria
 - Often simple and unique prediction
 - But often describes behavior not very well

• Use the standard prediction as a benchmark
Deriving alternative predictions

- Observations from everyday life, intuition
- Previous experimental results (economics, psychology)
- Game theoretic analysis under alternative assumptions
 - Prospect Theory (risk behavior, loss aversion)
 - Fairness theories
 - Statistical game theory, QRE (errors depend on cost of error)
 - Level-k model (limited steps of reasoning)
 - Visceral factors, emotions
Writing instructions

• Simple language
 - Simple, short and unambiguous sentences
 - Use redundancies if issues are complicated
 - Consistent/uniform descriptions and framing
 - Avoid suggestive terms
 ~ Punishment: negative points
 ~ Defect: contribute nothing

• Pros and cons of Framing
 - Concrete framing (goods market, labor market)
 ~ Easy to understand
 ~ Problem (?): Associations from real life
 - Abstract framing
 ~ Avoids every day associations (does it really?)
 ~ Harder to understand the rules of the game
 ~ No control about what subjects really think
Instructions

• Complete description of the rules of the game
 - Sequence of decisions
 - Interaction
 - Payoff consequences

• Different ways to explain the payoff function
 - Formula
 - Verbal explanation
 - Table
 - Figure

• Control questions
 - Check understanding
 - Knowing who is done with the instructions
 - One should not be suggestive with examples
Questionnaire

- Test understanding of experiment
- Infer something about motives
- Credibility of experiment
- Control
 - How many subjects did know each other?
 - Socio-economic questions (sex, age, money, city, subject of study etc. etc.)
- Psychological questionnaires (used to construct particular types)
Paying subjects

- Use hypothetical currency and convert it into Euro at the end of experiment
- Show up fee
 - To compensate extra subjects
 - To cover losses in the experiment
- Goal: total payments should cover opportunity costs (typical job)
- Ensure Anonymity when paying
Recruiting subjects

• Tell the subjects that it is an economic experiment
 - Study human behavior
 - Important for understanding economic problems

• Why should you take part?
 - You can earn money (do not mention concrete amounts of money: this creates expectations and may pollute behavior “if I do not earn at least x, I must have been wrong”)
 - Learn about an interesting method in the social sciences
Data analysis

• Collect data in systematic way (one master file, which remains unchanged)

• Descriptive statistics
 - Tables
 ~ Title, clear variable names, round numbers
 - Figures
 ~ As simple as possible, title, label axes, complete legend
 ~ Figures often understood and remembered best

• Test Hypotheses
 - Frequently used:
 ~ Means (t-Test)
 ~ Wilcoxon Signed Rank Test
 ~ Wilcoxon-Mann-Whitney Test
 ~ Kolmogorov-Smirnov Two Sample Test